941 research outputs found

    Modeling of premixing-prevaporizing fuel-air mixing passages

    Get PDF
    The development of a computer program for the analytical prediction of the distribution of liquid and vapor fuel in the premixing-prevaporizing passage by the direct injection method is described. The technical approach adopted for this program is to separate the problem into three parts each with its own computer code. These three parts are: calculation of the two-dimensional or axisymmetric air flow; calculation of the three-dimensional fuel droplet evaporation; and calculation of the fuel vapor diffusion. This method of approach is justified because premixing passages operate at lean equivalence ratios. Hence, a weak interaction assumption can be made wherein the airflow can affect the fuel droplet behavior but the fuel droplet behavior does not affect the airflow

    Combustion of coal gas fuels in a staged combustor

    Get PDF
    Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented

    Analytical modeling of operating characteristics of premixing-prevaporizing fuel-air mixing passages. Volume 2: User's manual

    Get PDF
    A user's manual describing the operation of three computer codes (ADD code, PTRAK code, and VAPDIF code) is presented. The general features of the computer codes, the input/output formats, run streams, and sample input cases are described

    Elementary Science Projects and the Low Group of Ninth Graders

    Get PDF
    For many years it has been a common practice in junior high schools to group children according to their ability. In the science class, as well as in the other areas, this has had its advantages and disadvantages. To motivate the student in the low group is a different type of problem than to motivate the students of the average- or high-ability group

    Batteries and Bulbs With an Average Class of Ninth Graders

    Get PDF
    During the fall semester of 1969 I had occasion to try some elementary science units with a low group of ninth graders. Of the units tried, the E.S.S. Batteries and Bulbs had such interesting results that it instilled in me the idea of trying the unit with my regular ninth grade class

    Understanding the role of sexual transmission in the spread of ZIKA virus using an individual-based interconnected population model

    Get PDF
    Citation: Tanver, F., Lee, C., Mcvey, D., & Scoglio, S. (2018). Understanding the role of sexual transmission in the spread of ZIKA virus using an individual-based interconnected population model. Pre-Print, Unpublished Manuscript.Zika virus has affected the world as a long-term threat. Modeling its transmission is important in order to facilitate forecasts and control measures. We propose a novel node-based interconnected population model to simulate both vectored and sexual transmission of Zika virus. Using a sexual contact network, we incorporate heterogeneous mixing in the host population with stochastic transmission for realistic predictions. We also incorporate climatic variations in our model, which affect the mosquito vector population and consequently the arbovirus transmission. We perform extensive simulations to understand the effects of sexual transmission rate and network topology on the spreading of infections. Sexual transmission contributes to the epidemic spread and under certain conditions, can sustain it up to several months without vectors. This can potentially lead to recurrences once the mosquitoes overwinter. We also find that sexual transmission can have a stronger effect when vectored transmission is relatively weaker due to climatic conditions. Our results show that vectored and sexual transmission affect the disease dynamics differently

    Understanding the survival of Zika virus in a vector interconnected sexual contact network

    Get PDF
    Citation: Ferdousi, T., Cohnstaedt, L. W., McVey, D. S., & Scoglio, C. M. (2019). Understanding the survival of Zika virus in a vector interconnected sexual contact network. Scientific Reports, 9(1), 7253. https://doi.org/10.1038/s41598-019-43651-3The recent outbreaks of the insect-vectored Zika virus have demonstrated its potential to be sexually transmitted, which complicates modeling and our understanding of disease dynamics. Autochthonous outbreaks in the US mainland may be a consequence of both modes of transmission, which affect the outbreak size, duration, and virus persistence. We propose a novel individual-based interconnected network model that incorporates both insect-vectored and sexual transmission of this pathogen. This model interconnects a homogeneous mosquito vector population with a heterogeneous human host contact network. The model incorporates the seasonal variation of mosquito abundance and characterizes host dynamics based on age group and gender in order to produce realistic projections. We use a sexual contact network which is generated on the basis of real world sexual behavior data. Our findings suggest that for a high relative transmissibility of asymptomatic hosts, Zika virus shows a high probability of sustaining in the human population for up to 3 months without the presence of mosquito vectors. Zika outbreaks are strongly affected by the large proportion of asymptomatic individuals and their relative transmissibility. The outbreak size is also affected by the time of the year when the pathogen is introduced. Although sexual transmission has a relatively low contribution in determining the epidemic size, it plays a role in sustaining the epidemic and creating potential endemic scenarios

    Towards a Generic Neural Network Architecture for Approximating Tone Mapping Algorithms

    Get PDF
    Tone curves are a key feature in any image processing pipeline, and are used to change the pixel values of an input image to find an output image that looks better. Perhaps the most widely deployed tone curve algorithm is Contrast Limited Histogram Equalisation (CLHE). CLHE is an iterative algorithm that tone maps an input image so that the histogram of the output is (approximately) maximally uniform subject to the constraint that the tone curve has bounded slope (neither too large or too small).In this paper, we build upon a neural network framework [1] that was recently developed to deliver CLHE in fewer iterations (each layer in the neural network is analogous to a single iteration of CLHE, but the network has fewer layers than the number of iterations needed by CLHE). The key contribution of this paper is to show that the same network architecture can be used to implement a more complex (and more powerful) tone mapping algorithm. Experiments validate our method

    Expansion of amphibian intronless interferons revises the paradigm for interferon evolution and functional diversity

    Get PDF
    Citation: Sang, Y. M., Liu, Q. F., Lee, J., Ma, W. J., McVey, D. S., & Blecha, F. (2016). Expansion of amphibian intronless interferons revises the paradigm for interferon evolution and functional diversity. Scientific Reports, 6, 17. doi:10.1038/srep29072Interferons (IFNs) are key cytokines identified in vertebrates and evolutionary dominance of intronless IFN genes in amniotes is a signature event in IFN evolution. For the first time, we show that the emergence and expansion of intronless IFN genes is evident in amphibians, shown by 24-37 intronless IFN genes in each frog species. Amphibian IFNs represent a molecular complex more complicated than those in other vertebrate species, which revises the established model of IFN evolution to facilitate re-inspection of IFN molecular and functional diversity. We identified these intronless amphibian IFNs and their intron-containing progenitors, and functionally characterized constitutive and inductive expression and antimicrobial roles in infections caused by zoonotic pathogens, such as influenza viruses and Listeria monocytogenes. Amphibians, therefore, may serve as overlooked vectors/hosts for zoonotic pathogens, and the amphibian IFN system provides a model to study IFN evolution in molecular and functional diversity in coping with dramatic environmental changes during terrestrial adaption
    corecore